Large-Type Edition
THE UNIVERSITY OF THE STATE OF NEW YORK • THE STATE EDUCATION DEPARTMENT • ALBANY, NY 12234
List of Physical Constants

The Electromagnetic Spectrum

Wavelength in a vacuum (m)

 $10^{-13} \ 10^{-12} \ 10^{-11} \ 10^{-10} \ 10^{-9} \ 10^{-8} \ 10^{-7} \ 10^{-6} \ 10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1} \ 10^{0} \ 10^{1} \ 10^{2} \ 10^{3} \ 10^{4}$

Electricity

$$F_{r} = \frac{\frac{1}{2}}{2}$$

$$E = \frac{F_{r}}{2}$$

$$E = \frac{F_{r}}{2}$$

$$=\frac{\Delta z}{\Delta z}$$

$$\mathbf{I} = \frac{\rho}{A}$$

$$\mathbf{I} = \frac{2}{A} = \frac{2}{A}$$

$$= = = 2 = \frac{2}{1}$$

$$C_{1} = C_{1} = C_{2} = 3 = \cdots$$

$$= 1 = 2 = 3 = \cdots$$

$$= 1 + 2 + 3 + \cdots$$

E = electric field strength $F_{...}$ = electrostatic force = current = electrostatic constant = length of conductor = electrical power \prime = charge • = resistance • _ = equivalent resistance , = distance between centers = time = potential difference = work (electrical energy) - $\Delta = change$ $\rho = \text{resistivity}$

A = cross-sectional area

Mechanics

_ _ _ $= \Delta$, = ₂+ $r = \frac{1}{2} + \frac{1}{2} - 2$ $^{2} = ^{2} _{2} + 2$ $A = A \sin \theta$ $A = A \cos \theta$ = <u>F</u> $F_{\mu} = \mu F$ $F_{\mu} = \frac{G_{1}}{2}$ $= \frac{F}{2}$ = $E = F = \Delta$ F = $E = \frac{1}{2} \quad ^2$ $F = \frac{2}{2}$ $\Delta E = \Delta$

= acceleration
= centripetal acceleration
A = any vector quantity
= displacement or distance
E = total energy
F = force
F = centripetal force
F_{μ} = force of friction
F = weight or force due to gravity
F = normal force
F = net force
F = force on a spring
<pre>, = acceleration due to gravity or gravitational field strength</pre>
G = universal gravitational constant
= height
E = impulse
= spring constant
E = kinetic energy
= mass
= momentum
= power
E = potential energy
E = potential energy stored in a spring
= internal energy
<pre>, = radius or distance between centers</pre>
= time interval
= velocity or speed
– average velocity or average speed

= work

- = change in spring length from the equilibrium position
- $\Delta = change$
- $\theta = angle$
- μ = coefficient of friction

Reference Tables for Physical Setting/Physics 2006 Edition

Page 6 DET 615 LT 98-075 4 98-006 CDC