	New York State Next Generation Mathematics Learning Standards	
Grade 3 Crosswalk		
Operations and Algebraic Thinking		
Cluster Represent and solve proble	NYS P-12 CCLS	NYS Next Generation Learning Standard

New York State Next Generation Mathematics Learning Standards

Grade 3 Crosswalk

Operations and Algebraic Thinking

Cluster	NYS P-12 CCLS	NYS Next Generation Learning Standard
Solve problems involving the four operations, and identify and extend patterns in arithmetic.	3.OA.8 Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. Note: This standard is limited to problems posed with whole numbers	NY-3.OA.8 Solve two-step word problems posed with whole numbers and having whole-number answers using the four operations. NY-3.OA.8a Represent these problems using equations or expressions with a letter standing for the unknown quantity.
	and having whole-number answer; students showld know hew te perform operations in the conventional order when there are ne parentheses to specify a particular order.	NY-3.OA.8b Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
	Note: Two-step problems need not be represented by a single expression or equation.	
	3.OA.9 Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.	NY-3.OA.9 Identify and extend arithmetic patterns (including patterns in the addition table or multiplication table).

New York State Next Generation Mathematics Learning Standards		
Grade 3 Crosswalk		
Number and Operations - Fractions		
Cluster	NYS P-12 CCLS	NYS Next Generation Learning Standard
Develop understanding of fractions as numbers.	3.NF. 1 Understand a fraction $1 / b$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts of size $1 / b$.	NY-3.NF. 1 Understand a unit fraction, - , is the quantity formed by 1 part when a whole is partitioned into b equal parts. Understand a fraction - as the quantity formed by a parts of size - Note: Fractions are limited to those with denominators 2, $3,4,6$, and 8 .

3.NF. 2 Understand a fraction as a number on the number line; represent fractions on a number line diagram.
a. Represent a fraction $1 / b$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $1 / b$ and that the endpoint of the part based at 0 locates the number $1 / b$ on the number line.

Represent a fraction a / b on a number line diagram by marking off

		New York State Next Generation Mathematics Learning Standards	
Grade $\mathbf{3}$ Crosswalk			

a. Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.
b. Recognize and generate simple equivalent fractions, e.g., $1 / 2=2 / 4,4 / 6=2 / 3$). Explain why the fractions are equivalent, e.g., by using a visual fraction model.
c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form $3=3 / 1$; recognize that $3($ re $) 6(\mathrm{c}$

New York State Next Generation Mathematics Learning Standards

Grade 3 Crosswa Cluster	Measurement and
NYS P-12 CCLS	

NYS Next Generation Learning Standard

3.MD. 1 Tell and write time to the nearest minute and blem minutes, e.g., by representing the problem on a number line diagram.
3.MD. 2 Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l).

NY-3.MD. 1 Tell and write time to the nearest minute and measure time intervals in minutes. Solve one-step word problems involving addition and subtraction of time intervals in minutes.
e.g., representing the problem on a number line or other visual model.

Note: This includes one-step problems that cross into a new hour.

New York State Next Generation Mathematics Learning Standards		
Grade 3 Crosswalk		
Measurement and Data		
Cluster	NYS P-12 CCLS	NYS Next Generation Learning Standard
Represent and interpret data.	3.MD. 3 Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.	NY-3.MD. 3 Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-KABI KRZ[P DQ P RUH'LDOG3 KRZPP DQ [OHN/\$LREOP VYMG] information presented in a scaled picture graph or a scaled bar graph. e.g., Draw a bar graph in which each square in the bar graph might represent 5 pets.
	3.MD. 4 Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units ${ }^{2}$ whole numbers, halves, or quarters.	NY-3.MD. 4 Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot where the horizontal scale is marked off in appropriate units ${ }^{2}$ whole numbers, halves, or quarters.
Geometric measurement: understand concepts of area and	3.MD. 5 Recognize area as an attribute of plane figures and understand concepts of area measurement.	NY-3.MD. 5 Recognize area as an attribute of plane figures and understand concepts of area measurement.
addition.	 can be used to measure area. A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.	NY-3.MD.5a Recognize a square with side length 1 NY-3.MD.5b Recognize a plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.

New York State Next Generation Mathematics Learning Standards		
Grade 3 Crosswalk		
Cluster	Measurement and Data	
NYS P-12 CCLS	NYS Next Generation Learning Standard	
Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.	3.MD.8 Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.	NY-3.MD.8a Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths or finding one unknown side length given the perimeter and other side lengths.
NY-3.MD.8b Identify rectangles with the same perimeter and different areas or with the same area and different perimeters.		

